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Dioxins are lipophilic chemicals that resist 
biological and environmental degradation, 
making them persistent in the environment. 
Seventy-five dioxin congeners and 135 furan 
congeners comprise the complex mixture of 
dioxins, of which 7 and 10 congeners, respec-
tively, are capable of binding to and activating 
the aryl hydrocarbon receptor (AhR) (Van den 
Berg et al. 2006). Of the 209 polychlorinated 
biphenyl (PCB) congeners, 12 have the poten-
tial to activate the AhR (Van den Berg et al. 
2006). Among these, 2,3,7,8-tetrachloro
dibenzo-p-dioxin (TCDD) is the most toxic 
environmental contaminant in animal studies 
(Denison and Nagy 2003) and thus is signifi
cant for human health (Birnbaum 1994; 
Larsen 2006; Schecter et al. 2006).

Dioxins are by-products of industrial 
processes such as chlorine bleaching of pulp 
and paper, the manufacture of certain pesti-
cides, and incineration of medical waste and 
plastics (Anderson and Fisher 2002; Hewitt 
et al. 2006; Lin et al. 2006; Thornton et al. 
1996). Resistance to degradation leads to bio
accumulation and biomagnification of dioxins 
in the food chain. Inclusion of animal fat in 
animal feed is another route of dioxin entry 
to the food supply and a source of exposure 
(Hoogenboom et al. 2007). Human exposure 
is primarily through consumption of contami-
nated food, especially high-fat foods such as 
milk, cheese, meat, some fish, fast foods, and 
breast milk (Schecter and Li 1997; Schecter 
et al. 1997, 1998a, 1998b, 2001). Residue 
levels have been measured in the serum of 
pregnant Canadian women with a mean ± SE 
of 0.34 ± 0.01 pg TCDD/g lipid (Foster et al. 
2005), lower than the serum concentrations 

measured in pregnant German women (range, 
4.34–97.3 pg TCDD/g lipid; Wittsiepe et al. 
2007) and women from central Taiwan (mean, 
6.7 pg TCDD/g lipid; Wang et al. 2004). The 
different concentrations in these studies reflect 
differences in measurement techniques; a gene 
reporter assay [chemical-activated luciferase 
gene expression (CALUX) assay] and high- 
resolution mass spectrometry have been used 
to quantify World Health Organization 
(WHO) toxic equivalence quotient concentra-
tions or dioxin-like activity. Regardless, these 
studies demonstrate that the fetus is exposed 
to dioxin-like chemicals during a critical win-
dow of development. The half-life of dioxin 
ranges from 5.8 to 14.1  years in humans 
and is influenced by body composition, with 
higher body fat associated with a longer half-
life (Michalek et al. 1992, 1996, 2002). By 
comparison, the half-life ranges from 10 to 
15 days in mice (Grassman et al. 1998) and 
is approximately 3 weeks in rats (Rose et al. 
1976). Given the documented adverse effects 
on the adult rat reproductive tract after a sin-
gle in utero exposure to TCDD, developmen-
tal exposure and differences in the half-life of 
TCDD could have important consequences 
for the relevance of results from animal studies 
for human health.

Experimental evidence demonstrates that 
most toxic actions of TCDD are mediated 
through the AhR, which is a ligand-activated 
transcription factor (Robles et al. 2000) ubiq-
uitously expressed in many human tissues and 
cell lines (Dolwick et al. 1993; Harper et al. 
1991; Li et al. 1998). AhR is inactive and 
unbound in the cytoplasm. Upon ligand bind-
ing, the AhR binds to the aryl hydrocarbon 

nuclear translocator (ARNT) protein, result-
ing in translocation to the nucleus, where 
the ligand–AhR–ARNT complex binds to 
response elements in the promoter of AhR-
regulated genes (dioxin response element).

In humans, exposure to dioxins has been 
linked to a variety of adverse effects, includ-
ing chloracne (Baccarelli et al. 2005a, 2005b), 
immune suppression (Weisglas-Kuperus 
et al. 2000), thyroid dysfunction (Koopman-
Esseboom et al. 1994; Pavuk et al. 2003), 
increased risk for diabetes (Longnecker and 
Michalek 2000) and endometriosis (Eskenazi 
et al. 2000; Heilier et  al. 2007), impaired 
neurodevelopment (Koopman-Esseboom et al. 
1996; Vreugdenhil et al. 2002), and reproduc-
tive/developmental abnormalities (Dimich-
Ward et al. 1996; Halldorsson et al. 2009; 
Leijs et al. 2008; Mocarelli et al. 1996, 2000, 
2008). A number of studies attribute back-
ground dioxin exposure to adverse effects on 
development or pathophysiology in multiple 
organ systems. However, the results of these 
studies are controversial, and it is not possible 
to establish causal associations; thus, animal 
studies are essential.

In animal studies, dioxin exposure has been 
shown to cause thymic atrophy (Chahoud 
et al. 1989), immune suppression (Hogaboam 
et al. 2008), hepatotoxicity (Chahoud et al. 
1989), and impaired thyroid function (Fan 
and Rozman 1995; Henry and Gasiewicz 
1987; Kohn 2000). Of these, TCDD effects 
on the reproductive tract are the most nota-
ble, owing to the sensitivity of this system. 
Developmental exposure to TCDD induces 
placental dysfunction (Ishimura et al. 2006; 
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Background: A single in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on 
gestation day 15 decreased epididymal sperm count in adult rats and thus was used to establish a 
tolerable daily intake for TCDD. However, several laboratories have been unable to replicate these 
findings. Moreover, conflicting reports of TCDD effects on daily sperm production suggest that 
spermatogenesis may not be as sensitive to the adverse effects of TCDD as previously thought.

Data sources: We performed a PubMed search using relevant search terms linking dioxin exposure 
with adverse effects on reproduction and spermatogenesis.

Data synthesis: Developmental exposure to TCDD is consistently linked with decreased cauda 
epididymal sperm counts in animal studies, although at higher dose levels than those used in some 
earlier studies. However, the evidence linking in utero TCDD exposure and spermatogenesis is not 
convincing.

Conclusions: Animal studies provide clear evidence of an adverse effect of in utero TCDD exposure 
on epididymal sperm count but do not support the conclusion that spermatogenesis is adversely 
affected. The mechanisms underlying decreased epididymal sperm count are unknown; however, we 
postulate that epididymal function is the key target for the adverse effects of TCDD.
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Kawakami et al. 2006); decreased offspring 
survival (Bell et al. 2007a, 2007b; Bjerke and 
Peterson 1994; Flaws et al. 1997; Gray and 
Ostby 1995; Gray et al. 1995, 1997b; Roman 
et al. 1995; Sommer et al. 1996); develop-
mental defects of the palate, heart, and kidney 
(Aragon et al. 2008; Birnbaum et al. 1989; 
Theobald and Peterson 1997) and reproductive 
tract of males (Gray et al. 1997a; Vezina et al. 
2008) and females (Flaws et al. 1997; Gray 
and Ostby 1995; Gray et al. 1997b; Heimler 
et  al. 1998; Wolf et  al. 1999); decreased 
weights of reproductive organs (Bjerke and 
Peterson 1994; Gray and Ostby 1995; Gray 
et al. 1995, 1997a; Loeffler and Peterson 1999; 
Mably et al. 1992a, 1992c; Moore et al. 1985; 
Ohsako et al. 2001, 2002; Wolf et al. 1999); 
delayed onset of sexual maturation (Bjerke 
et al. 1994; Faqi and Chahoud 1998; Flaws 
et al. 1997; Gray et al. 1997a, 1997b); femi-
nization of males (Bjerke et al. 1994; Mably 
et al. 1992b); and decreased sperm counts 
(Faqi et al. 1998; Gray et al. 1995, 1997a; 
Mably et  al. 1992a; Sommer et  al. 1996). 
Of the reproductive/developmental effects of 
TCDD, decreased sperm counts are consid-
ered as the most sensitive outcome. Mably 
et al. (1992a) reported that epididymal sperm 
counts were significantly decreased in rats 
after a single exposure to 0.064 µg TCDD/kg  
on gestational day (GD) 15. Similarities in 
spermatogenesis between rats and humans, 
together with the marked apparent sensitivity 
of sperm production to the adverse effects of 
TCDD exposure, has yielded the establish-
ment of a tolerable daily intake of approxi-
mately 2 pg/kg/day for TCDD and related 
compounds by the WHO [Joint FAO/ WHO 
(Food and Agriculture Organization/WHO) 
Expert Committee on Food Additives 2001]. 
However, results of recent studies have been 
unable to reproduce the effect of in utero 
TCDD exposure on epididymal sperm counts 
(Bell et al. 2007a, 2007c; Ohsako et al. 2001; 
Yonemoto et al. 2005), although one study 
did report a decrease in epididymal sperm 
counts with a TCDD concentration of 1 µg/kg  
(Ohsako et al. 2001). Reasons for the diver-
gent results are unclear, but differences in 
methodology used to quantify sperm count 
could account for the observed differences. In 
addition, disparities in dioxin toxicokinetics 
and species sensitivity to dioxins raise impor-
tant questions concerning the use of animal 
models to estimate human risk (Adler 1996; 
Aylward et al. 2005; Simanainen et al. 2004a, 
2004b). Therefore, the objective of this review 
is to evaluate the effects of TCDD exposure on 
spermatogenesis.

We undertook a systematic review of the 
literature and performed a PubMed (National 
Center for Biotechnology Information 2009) 
search using the following search terms: 
dioxin, TCDD, reproductive, developmental, 

testis, spermatogenesis, sperm, semen quality, 
fertility, and fecundity. The search yielded 
4,224 titles; duplicate papers, review articles, 
letters to the editor, and articles describing 
tissue culture or nonmammalian studies were 
excluded from further analysis. The abstracts 
of all remaining articles were read by two 
independent investigators and were included 
for further analysis if they fit the following 
criteria: a) the paper was published in English, 
b) the abstract described an epidemiologic or 
animal study in which TCDD or dioxin-like 
chemicals were either measured in human 
tissues or administered to experimental ani-
mals; and c) effects on reproductive organs, 
sperm count, and sperm characteristics were 
assessed. From the original data set, 33 articles 
described the reproductive toxicity of TCDD; 
of these, 9 specifically examined the effect of a 
single in utero TCDD exposure on spermato
genesis. For each paper, we extracted details 
of the experimental methods and the resulting 
data for further study.

Dioxin Exposure and 
Spermatogenesis
Of the reproductive/developmental effects 
documented in the literature, spermato
genesis is considered the most sensitive 
adverse effect of TCDD exposure, as shown 
by the use of this end point by the WHO in 
setting its tolerable daily intake for TCDD 
(Joint FAO/WHO Expert Committee on 
Food Additives 2001). Sperm counts are 
decreased by up to 36% compared with con-
trols (Bjerke and Peterson 1994), with the 
lowest effective dose of 0.064 µg TCDD/kg 
body weight (BW) reported for Holtzman 
rats (Mably et al. 1992a). GD15 is the most 
sensitive time point for the adverse effects of 
TCDD exposure because effects on spermato
genesis in rats with lactational exposure were 
less pronounced (Bjerke and Peterson 1994). 
Furthermore, the effects are thought to be 
AhR mediated because severity of the TCDD 
effect on epididymal sperm count is modi-
fied in rats bearing different resistance alleles 
(Simanainen et al. 2004a, 2004b).

Although the process of spermatogenesis is 
qualitatively similar in rats and humans, there 
are important differences. In rats, spermato
genetic cycles begin every 12.9 days, whereas 
in humans there are 16 days between cycles; 
a spermatogenic cycle requires 52–54 days 
in rats and 65 days in humans to complete 
(Adler 1996; Hess et al. 1990; Robb et al. 
1978). Spermatogonial differentiation lasts 
12  days in rats and 16  days in humans 
(Adler 1996), and development of spermato
cytes requires 14 days in rats and 25 days 
in humans. Spermiogenesis, the process of 
differentiation of haploid germ cells from 
round to elongated spermatids, takes another 
7–14 days in rats and 8–17 days in humans. 

Throughout spermatogenesis, genes are differ-
entially expressed in a stage-dependent man-
ner (Pang et  al. 2006), and transcripts for 
AhR and ARNT have been documented in the 
rat testes, epididymides, seminal vesicles, vas 
deferens, and prostate (Roman et al. 1998). 
In humans, the AhR and ARNT are expressed 
in spermatocytes, where they are thought to 
play a role in regulating apoptosis of sperma-
tocytes (Schultz et al. 2003). Therefore, all of 
the requisite signaling machinery is present in 
the testis of both rats and humans. There is 
limited evidence that developmental exposure 
to TCDD results in testicular exposure. The 
highest maternal dose of TCDD used (0.8 µg 
TCDD/kg BW) in one study resulted in tes-
ticular levels of 0.49 pg TCDD/g wet testis 
on postnatal day (PND) 120, demonstrating 
that residue levels in target tissue can persist 
throughout the animal’s life (Ohsako et  al. 
2001). However, the relevance of animal stud-
ies to human risk is still questionable. First, 
although human exposure to dioxin and diox-
in-like chemicals continues to be widespread, 
tissue residue levels are low relative to the con-
centrations used in animal studies. Second, 
the timing of TCDD exposure appears to be 
critical in establishing the previously docu-
mented adverse reproductive phenotype 
(Mably et  al. 1992a). Welsh et  al. (2008) 
suggested a window of programming for the 
male reproductive tract during embryonic 
development and described the presence of 
early (GD15.5–GD17.5), middle (GD17.5–
GD19.5), and late (GD19.5–GD21) win-
dows of development, which correspond to 
the period of development after the onset of 
fetal androgen production by the rat testis 
(GD15.5–GD17.5). Subsequent masculiniza-
tion of the reproductive tract occurs with the 
morphologic differentiation of the epididymis, 
vas deferens, seminal vesicles, and prostate, as 
well as external genitalia (penis, scrotum, and 
perineum). Fetal androgen development in 
humans occurs during weeks 8–37 of gesta-
tion (Siiteri and Wilson 1974), so the early 
programming window of development in rats 
corresponds to weeks 8–14 of development 
in humans (Welsh et al. 2008). Assuming 
similar effects in humans, exposure to chemi-
cal toxicants, including dioxin, would have 
to occur during the first trimester of human 
fetal development to produce a phenotype 
similar to that observed in rats (Sharpe 2009). 
However, in humans, the greatest exposure 
to dioxins occurs during lactation, a period 
during which rodents are relatively insensitive 
to the adverse effects of TCDD treatment 
(Bjerke and Peterson 1994).

The effect of developmental exposure to 
TCDD on spermatogenesis in rats has raised 
concerns for potential effects in humans. 
However, several studies in rats (Bell et al. 
2007a; Ohsako et al. 2001; Yonemoto et al. 
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2005) using similar experimental designs have 
been unable to replicate the reduction in sperm 
number reported by Mably et  al. (1992a), 
raising questions concerning the validity of 
the conclusions and their relevance to human 
health. Although the reasons are unclear, dif-
ferences in rat strains cannot account for the 
divergent results because conflicting results have 
been documented in all rat strains used to date. 
It is noteworthy that although several studies 
have been unable to replicate the findings of 
Mably et al. (1992a), decreased epididymal 
sperm counts have been demonstrated at a con-
centration of 1.0 µg/kg (Ohsako et al. 2001). 
Others speculate that statistically robust studies 
employing large sample sizes (25–60 litters/
treatment group) are more appropriate and 
likely to yield more reliable results (Bell et al. 
2007a, 2007b). However, effects of TCDD on 
spermatogenesis have been reported in studies 
with as few as 3–5 litters (Wilker et al. 1996) 
to as many as 9–12 litters (Bjerke and Peterson 
1994; Gray et al. 1997b; Sommer et al. 1996) 
per treatment group. Although sample sizes in 
these studies are small, our calculations demon
strate that to detect a difference of 15 × 106 
sperm/mL with an SD of approximately 
8.5 × 106, a power of 0.80, and an alpha of 
0.5, a sample size of 9 animals/treatment group 
would be sufficient. Hence, we conclude that 
most of the reviewed studies were adequately 
powered and that the documented effects are 
not likely due to statistical artifact. Rather, we 
suggest that the divergent results may be due to 
differences in methods employed to quantify 
sperm, which have been surprisingly different 
and range from automated methods to manual 
counts with a hemocytometer. Indeed, some 
sperm-counting methodologies can be highly 
variable, with coefficients of variation as high as 
40% as seen in the studies by Bell et al. (2007a, 
2007b). Hence, although studies need to be 
adequately powered, it is also imperative that 
sensitive outcome measures be employed. 

In quantifying sperm count in reproduc-
tive/developmental toxicity studies, we propose 
that there is a need to standardize the meth-
ods used, and we favor manual counts with 
a hemocytometer over automated methods. 
Furthermore, we found different methods of 
reporting sperm counts [daily sperm produc-
tion (DSP)/whole testis (Wilker et al. 1996), 
DSP/g testis (Wilker et al. 1996), testicular 
spermatid head count (Gray et al. 1995), and 
sperm counts from whole epididymis (Bell 
et al. 2007a, 2007b), caput/corpus epididymis 
(Gray et  al. 1997b; Sommer et  al. 1996; 
Wilker et al. 1996), cauda epididymal sperm 
(Bjerke and Peterson 1994; Gray et al. 1995; 
Mably et al. 1992a; Ohsako et al. 2001, 2002; 
Sommer et  al. 1996; Wilker et  al. 1996; 
Yonemoto et al. 2005), and ejaculated sperm 
(Gray et al. 1995; Sommer et al. 1996)] thus 
making comparisons difficult. Only two 

studies (Sommer et al. 1996; Wilker et al. 
1996) measured DSP, caput/corpus sperm, 
and caudal epididymal sperm counts, per-
mitting assessment of potential target sites of 
TCDD. Interestingly, although both stud-
ies agree on the effect of TCDD on caudal 
epididymal sperm counts, they diverge on 
the measure of DSP. Furthermore, different 
time points have been employed to quantify 
sperm, ranging from PND49, representing 
puberty (Ohsako et al. 2001; Yonemoto et al. 
2005), to 15 months of age (Gray et al. 1995), 
with most studies quantifying sperm counts 
between PND63 and PND120, corresponding 
to postpubertal and adult stages, respectively. 
Because male rodents are not sexually mature 
before approximately PND50 and because 
a spermatogenic cycle takes 52–54 days to 
complete in the rat (Adler 1996; Robb et al. 
1978), measurement of sperm counts in rats 
before PND70 is likely to produce ambigu-
ous results. Nonetheless, six of eight studies 
reported a TCDD-induced decrease in cauda 
epididymal sperm counts (Bjerke and Peterson 
1994; Gray et al. 1997b; Mably et al. 1992a; 
Ohsako et  al. 2002; Sommer et  al. 1996; 
Wilker et  al. 1996), whereas the evidence 
for changes in DSP are more variable, with 
only three of six studies finding a significant 
decrease (Bjerke and Peterson 1994; Mably 
et al. 1992a; Sommer et al. 1996). The variable 
results for DSP are more difficult to interpret 
because sperm production can be affected by 
many factors, including nutrition, infection, 
and general health of the animal, as well as 
time from last ejaculation and toxicant effects 
on the hypothalamic–pituitary–testicular axis. 

Prior studies have demonstrated treatment-
related decreases in BW (Bjerke and Peterson 
1994; Sommer et al. 1996) and absolute tes-
ticular weight (Bjerke and Peterson 1994; 
Mably et al. 1992a; Sommer et al. 1996), sug-
gesting a potential effect of TCDD; however, 
relative testicular weights, when reported, were 
unchanged (Bjerke and Peterson 1994; Ohsako 
et al. 2002; Sommer et al. 1996), indicating 
that the testes were unaffected. Circulating 
levels of follicle-stimulating hormone (FSH), 
luteinizing hormone, and testosterone were 
unchanged (Bjerke and Peterson 1994; Mably 
et al. 1992a; Ohsako et al. 2001), suggesting 
that the hypothalamic–pituitary–testicular axis 
was also unaffected by TCDD. Morphologic 
assessment of the testes also failed to demon-
strate evidence of treatment-related effects. 
In one study, testicular atrophy and separa-
tion of the caput and caudal regions with a 
loss of corpus epididymis was observed in two 
rats, which were excluded from the analysis 
(Ohsako et al. 2001).

Other than abstinence, Sertoli cell num-
ber is a central determinant of sperm count 
(Sharpe et al. 2003). In humans, Sertoli cell 
proliferation takes place during fetal, postnatal 

(0–8 months of age), and prepubertal develop-
ment. Animal studies in mice and rats reveal 
that androgens primarily regulate Sertoli cell 
proliferation during the perinatal and pre
pubertal periods (Atanassova et al. 2005; De 
Gendt et al. 2004; Tan et al. 2005a, 2005b), 
whereas FSH plays a more central role in the 
peripubertal period (Johnston et al. 2004). 
Direct effects of developmental exposure to 
TCDD on the spermatocyte to Sertoli cell 
ratios were measured in adult Holtzman rats 
exposed to TCDD on GD15 (Mably et al. 
1992a). TCDD did not affect the spermato
cyte to Sertoli cell ratio at any age (PNDs 49, 
63, or 120), leading to speculation of a defect 
in germ cell division or an increase in apop-
tosis of germ cells. Morphologic changes to 
the testis have been demonstrated in adult 
rats exposed to a single injection of either 
3.0 or 5.0 µg TCDD/kg BW, whereas doses 
of 0.5  and 1.0 µg TCDD/kg BW had no 
effect on the testis (Chahoud et al. 1992). In 
that study, the number of spermatids per tes-
tis was decreased by TCDD treatment, and 
the spaces between adjacent Sertoli cells were 
enlarged, indicating dissolution of the germi-
nal epithelium. Similarly, contacts between 
Sertoli cells and spermatogonia were disrupted 
in a subchronic study in rats treated with an 
initial dose of 25 or 75 µg TCDD/kg BW fol-
lowed by a once-weekly maintenance dose of 
either 5 or 15 µg/kg, respectively, for 10 weeks 
(Chahoud et al. 1989). However, Sertoli cell 
changes were only seen at high doses, which 
are well beyond the concentrations reported 
to induce changes in DSP and epididymal 
sperm counts (Mably et al. 1992a). Thus, it 
is unlikely that TCDD-induced changes in 
sperm counts can be attributed to changes in 
Sertoli cell structure or function. Therefore, 
we propose that the primary effect of TCDD 
is not on the testes or on spermatogenesis. We 
postulate that adverse effects of TCDD are 
more likely related to developmental abnor-
malities of the reproductive tract and epi
didymal structure and/or function.

Alternative Modes  
of Dioxin Action
TCDD-induced changes in cauda epididy-
mal sperm counts and decreased weights of 
androgen target tissues such as the seminal 
vesicle, epididymides, and prostate pro-
vide clear evidence of developmental toxic-
ity. The mechanism(s) of action underlying 
these responses remains unclear. Modes and/
or mechanisms of action of dioxin-induced 
changes in cauda epididymal sperm counts 
and reproductive tract structure and func-
tion of potential relevance to human health 
include dysregulation of androgen signal-
ing and enhanced phagocytosis of germ cells 
(reviewed by Phillips and Tanphaichitr 2008) 
and enhanced epididymal sperm transit.
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Dysregulation of androgen signaling. 
Circulating levels of testosterone and dihydro
testosterone (DHT) were decreased in adult rats 
exposed to high concentrations of TCDD in 
both time-course (15 µg TCDD/kg BW) and 
dose–response (100 µg TCDD/kg BW) studies 
(Moore et al. 1985). Similarly, serum testoster-
one concentrations were significantly reduced 
in adult male rats treated with 25.0 µg TCDD/
kg BW and sacrificed 4 weeks later (Johnson 
et al. 1992). However, the concentration of 
TCDD needed to induce a change in circulat-
ing testosterone levels is very high relative to the 
doses that alter sperm counts and those docu-
mented in human exposure. Decreased seminal 
vesicle and epididymal weights corroborated the 
reduced circulating testosterone levels; however, 
DSP or testis weights were unaffected, suggest-
ing that TCDD may have affected Leydig cell 
function, and morphologic assessment of the 
testes revealed a decrease in Leydig cell volume. 
In three different rat strains bred from TCDD-
resistant and -sensitive strains, circulating levels 
of testosterone were decreased 17 days after 
treatment with a single oral dose of 1,000 µg 
TCDD/kg BW (Simanainen et al. 2004a). 
Similarly, in utero exposure to the highest dose 
of TCDD (an initial dose of 300 ng TCDD/kg  
BW followed by a maintenance dose of 60 ng 
TCDD/kg BW for the 2 weeks before mat-
ing) induced a 50% decrease in plasma testos-
terone levels (Faqi et al. 1998). Mably et al. 
(1992c) found a 60% decrease in plasma tes-
tosterone and a 41% reduction in DHT after 
in utero exposure to a single dose of TCDD, 
which although substantial, was not signifi-
cant, whereas other investigators were unable to 
find treatment-induced changes in circulating 
androgen levels (Gray et al. 1995; Loeffler and 
Peterson 1999; Roman et al. 1995). In contrast, 
1 µg TCDD/kg BW administered on GD15 
increased circulating levels of testosterone on 
PND70 in three different rat strains with dif-
ferent sensitivities to TCDD (Simanainen et al. 
2004b). No differences in circulating levels of 
FSH or testosterone were documented in adult 
Holtzman rats exposed to TCDD on GD15 
(Mably et al. 1992a). Therefore, the reduction 
in sperm counts reported in animal studies is 
unlikely the consequence of TCDD-induced 
changes in serum androgen levels (Simanainen 
et al. 2004a, 2004b) or effects on Leydig cell 
structure or function.

Dysregulation of testosterone signaling 
has been documented in several animal stud-
ies but not detected in others. TCDD treat-
ment induced a decrease in androgen receptor 
(AR) gene expression in ventral prostate and 
decreased weight, both evidence of decreased 
androgen signaling (Ohsako et  al. 2001). 
Morrow et al. (2004) reported that activa-
tion of the AhR in LnCAP prostate cells by 
TCDD could inhibit androgen-dependent 
proliferation, which was mediated by cross-talk 

between the AhR and the AR. Transcriptional 
regulation of AR signaling (Kollara and Brown 
2006) by competition between the AR and 
the AhR for nuclear transcription factors is 
another possibility (Kollara and Brown 2006). 
Competition between the AhR and AR for 
transcription factors has been documented in 
breast cancer cell lines (Kollara and Brown 
2006); however, although intriguing, its rel-
evance to the testis and human cells in vivo and 
during development of the male reproductive 
tract remains unknown.

Dysregulation of epididymal function. 
Reports that a single TCDD injection on 
GD15 results in decreased epididymal or cauda 
epididymal sperm counts without effect on 
testicular DSP are difficult to reconcile. We 
postulate that the adverse effects of TCDD are 
mediated via changes in epididymal function 
as opposed to effects on the testes. Changes 
in sperm transit through the excurrent duct 
system or increased removal of damaged sperm 
from the epididymis could provide reason-
able alternative explanations to TCDD effects 
on spermatogenesis. Several laboratories have 
examined TCDD treatment on sperm trans-
port through the epididymides with divergent 
results. High-dose in utero and lactational expo-
sure to TCDD (an initial dose of 25–300 ng 
TCDD/kg followed by 5–60 ng TCDD/kg 
throughout premating, mating, pregnancy, 
and lactation) decreased the time for sperm 
to transit through the epididymides in Wistar 
rats (Faqi et al. 1998). In contrast, exposure 
to 1.0 µg TCDD/kg on GD15 had no effect 
on sperm transit in Holtzman rats, suggesting 
that phagocytosis of sperm in the epididymides 
is increased (Sommer et al. 1996). Exposure of 
C57BL/6 mice to TCDD (0.1–50 µg TCDD/
kg) for 24 hr resulted in a decrease in sper-
matozoan mitochondrial membrane potential 
compared with vehicle-treated control mice 
(Fisher et al. 2005). The effect was not evident 
in AhR-knockout mice, demonstrating that the 
effect requires activation of the AhR. However, 
there was no increase in the number of apop-
totic germ cells in the testis and no change in 
morphology of the testis and epididymis. 

In general, phagocytosis of spermatozoa by 
the epithelial cells of the cauda epididymidis 
is very low. It has previously been suggested 
that damaged spermatozoal cells can be phago
cytosed (Sutovsky et al. 2001), but the inter-
pretation of these data has been challenged 
(Cooper et al. 2002). Furthermore, if TCDD 
treatment did stimulate phagocytosis to the 
extent that sperm counts decreased by almost 
40%, one would expect this to be obvi-
ous when examining the morphology of the 
epididymis. This does not appear to be the 
case, given the lack of reference of such an 
effect. A second possibility is that the blood–
epididymal barrier is compromised, resulting in 
activation of the immune system, thus allowing 

macrophages to readily enter the lumen of the 
epididymis and attack maturing spermatozoa 
(Cyr et al. 2007). Although this may explain 
the loss of epididymal spermatozoa, we found 
no reports of large numbers of macrophages 
within the epididymal lumen. A more likely 
possibility is that spermatozoa transit time is 
altered, resulting in fewer spermatozoa stored in 
the cauda epididymis. The epididymis is a long, 
open-ended, and highly convoluted tubule 
(Robaire et al. 2006). Spermatozoa are stored 
in the cauda epididymidis, but the retention of 
spermatozoa in this region is not well under-
stood. Perhaps the best explanation is related to 
the length and high degree of convolution in 
this region of the epididymis. Changes in the 
convoluted nature of the cauda or the length 
of the cauda could directly affect the quan-
tity of spermatozoa retained in the epididymis. 
Antiandrogenic compounds such as phtha-
lates reportedly alter epididymal development 
and coiling of the epididymal tubule (Barlow 
and Foster 2003), and flutamide significantly 
reduces the size of the cauda epididymis 
(McKinnell et al. 2000); however, whether the 
length of the epididymal tubule is also reduced 
is unknown. Wilker et al. (1996) reported that 
neonatal administration of TCDD resulted in a 
loss of epididymal segmentation, although they 
did not report whether this is associated with 
alterations in the cauda. Epididymal sperm 
transit time may also be affected by changes in 
the composition of epididymal fluid. Water is 
reabsorbed from the seminal fluid in the effer-
ent ducts between the testis and epididymis 
(Hess 2002), a process regulated by estradiol 
and mediated by estrogen receptor‑α (ERα) 
(Zhou et al. 2001). TCDD is known to block 
estrogen action by activating the AhR, which 
has been shown to partly bind to the estro-
gen response element of estrogen-dependent 
genes (Safe et al. 1998). In the epididymis, 
after treatment with antiestrogens, or in ERα-
knockout mice, there is retention of water in 
the seminal fluid (Zhou et al. 2001), which is 
associated with a decrease in cauda epididymal 
sperm counts (Ruz et al. 2006). Less concen-
trated sperm would exhibit faster transit time, 
particularly in the cauda epididymis, because 
fluid pressure in the epididymal lumen would 
likely be increased. Thus, the effect of dioxin 
and dioxin-like chemicals on epididymal struc-
ture and function requires further study.

Epidemiology
Semen quality and sperm counts have report-
edly declined approximately 2% per year for 
about 50 years (Carlsen et al. 1992). That 
provocative review (Carlsen et al. 1992) led 
to an explosion of studies, some of which 
reported a decline in semen quality (Auger 
et al. 1995; Irvine et al. 1996; Younglai et al. 
1998) and some of which did not (Pal et al. 
2006). Although the reported decline in sperm 
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counts remains controversial, there appears to 
be consensus for regional differences in semen 
quality (Jorgensen et al. 2001, 2002, 2006). 
Geographic differences in semen quality may 
also be accounted for by differences in race, 
genetic background, lifestyle, diet, and expo-
sure to environmental toxicants. 

Environmental contaminants have received 
growing attention, in part because animal stud-
ies have shown that some chemicals reduce 
sperm counts and because human exposure 
to environmental pollutants is potentially 
modifiable. Reduced sperm counts have been 
documented in studies of men occupation-
ally exposed to different environmental con-
taminants (De Celis et  al. 2000; Eskenazi 
et  al. 1991), but the relationship between 
dioxin exposure and semen quality remains 
ambiguous. No difference in semen quality 
was found in Taiwanese men exposed pre
natally to rice oil contaminated with PCBs 
and polychlorinated dibenzofurans (Yu-Cheng 
accidental exposure), despite the occurrence 
of chloracne—clear evidence of AhR activa-
tion (Guo et al. 2000). However, sperm con-
centration and sperm motility were decreased 
in dioxin-exposed young healthy men from 
Belgium, a region with high dioxin contam-
ination (Van Waeleghem et al. 1996), and 
total sperm count was decreased in Belgian 
men from Flanders (Comhaire et al. 2007). 
In 101 Flemish men 5 months after expo-
sure to PCB- and dioxin-contaminated food, 
Dhooge et al. (2006) observed that semen vol-
ume was decreased but sperm concentration 
was increased with an increase in dioxin-like 
activity (CALUX assay). The increased sperm 
concentration can be explained by decreased 
semen volume in these men, whereas total and 
free testosterone levels were also decreased with 
increasing dioxin-like activity. In contrast, no 
relationship between dioxin-like activity and 
semen parameters was found in Inuit men and 
men from three European populations with tis-
sue residue levels representative of background 
exposure (Toft et al. 2007). 

It is difficult to compare studies because of 
differences in reporting results, such as sperm 
count versus sperm concentration, methods of 
quantifying dioxin exposure, and differences 
in controlling for confounding factors such 
as age, smoking history, influence of moth-
ers smoking during pregnancy, time from 
last ejaculation, use of medications known 
to affect semen quality, and health status of 
the study subjects. Another factor that may 
be important is the subject’s age at time of 
exposure, as shown in a recent study of semen 
quality in men acutely exposed to high levels 
of TCDD in Seveso, Italy (Mocarelli et al. 
2008). In that study, men were stratified on 
the basis of their age at the time of exposure; 
men who were adults at the time of exposure 
showed no effects, while sperm counts were 

increased in men exposed during the peri-
pubertal period. However, decreased sperm 
concentrations were observed in men who 
were between 1 and 9 years of age at the time 
of exposure (mean age, 6.2 years). Mocarelli 
et al. (2008) also reported a decreased per-
centage of motile sperm and of progressively 
motile sperm, without any effect on circu-
lating testosterone levels, suggesting a criti-
cal time window for dioxin exposure during 
which the developing reproductive tract is 
more sensitive; this is consistent with the ani-
mal literature. In contrast to the animal litera-
ture, these human exposures were associated 
with a decrease in semen characteristics, espe-
cially motility. Taken together, epidemiologic 
data suggest that dioxin exposure affects the 
function of sex glands with a decreased semen 
volume but with no change in sperm count; 
these data are, in part, consistent with the ani-
mal literature but contradictory to a definitive 
effect of dioxin on spermatogenesis. Moreover, 
although preliminary, the epidemiologic data 
also suggest that concentration and develop-
mental stage at the time of exposure may be 
an important determinant of dioxin effects on 
semen quality in the human population.

Summary and Conclusions
Developmental exposure to TCDD has been 
fairly consistently linked with decreased cauda 
epididymal and ejaculatory sperm counts in 
animal studies, although at higher dose lev-
els than those used by Mably et al. (1992a). 
Indeed, strengths of the animal literature are 
the demonstration of adverse effects on cauda 
epididymal sperm counts in multiple rodent 
species. The main weaknesses include different 
methods used to quantify sperm count; the 
paucity of studies that have examined TCDD 
effects on DSP and the ambiguous nature 
of those results; the absence of documented 
changes in testicular and spermatozoa morphol-
ogy; and the divergence of effects of TCDD 
upon sperm counts and circulating androgen 
levels. Therefore, we find no credible evidence 
to support the conclusion that TCDD adversely 
affects spermatogenesis, with the exception of a 
small number of male rats in which testicular 
and epididymal lesions have been described 
(Ohsako et al. 2001). Alternatively, we suggest 
that effects of TCDD on androgen signaling, 
reproductive organ weights, and sperm transit 
through the epididymides are more plausible 
potential explanations for the reported decrease 
in epididymal sperm counts.
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